IR-Spektren einiger wasserfreien Fluoro-aluminate, -gallate und -indate

Untersuchungen über Fluoro-metallate(III), 3. Mitt.*

Von

Peter Bukovec, Boris Orel und Jože Siftar

Aus dem Laboratorium für anorganische Chemie der Universität Ljubljana und Institut "Jožef Stefan", Ljubljana (Jugoslawien)

(Eingegangen am 18. Januar 1971)

Fluoro Metallates (III), III: IR-Spectra of Some Anhydrous Fluoro-aluminates, -gallates, and -indates

IR spectra of several hexa-, penta- and tetra-fluoro-metallates of aluminium, gallium and indium with several univalent cations together with hydrazinium($^{+1}$ and $^{+2}$) were recorded from 4000 to 59 cm⁻¹. Site group and factor group vibrational analysis was performed for the compounds with known structures. Complete agreement between theory and experiment was found only in the case of tetragonal tetrafluorometallates. No splittings of the valence and deformation modes were observed with hexafluorometallates even in the case of low symmetry. Splitting is characteristic for penta- and tetrafluoro compounds. In the case of hydrazinium fluorometallates octahedral coordination was additionaly proved on the basis of position of absorption bands. Weak hydrogen bonds were used for the explanation of the spectra of ammonium ion in the corresponding compounds.

Hexa-, Penta- und Tetra-fluorometallate von Aluminium, Gallium, Indium, einigen einwertigen Ionen und von Hydrazinium(¹⁺ und ²⁺) wurden im Spektralbereich von 4000 bis 59 cm⁻¹ untersucht. Für die Verbindungen mit bekannten Strukturen wurden die Faktorgruppenanalyse und Vibrationsanalyse auf Grund der Lagesymmetrie ausgeführt. Vollkommene Übereinstimmung zwischen den theoretischen und experimentellen Daten ergibt sich nur bei den tetragonalen Tetrafluorometallaten. Bei Hexafluorometallaten erscheint bei niedrigeren Symmetrien auch keine Aufspaltung der Valenz- und Deformations-Banden. Eine Aufspaltung ist aber charakteristisch für die Penta- und Tetrafluorometallate. Auf Grund der Lage der Banden wird zusätzlich die oktaedrische Koordination in den Hydraziniumfluorometallaten bewiesen. Mit der schwachen

^{* 2.} Mitt.: Mh. Chem. 102, 94 (1971).

Wasserstoffbindung sind die IR-Spektren der NH_4^+ -Ionen in deren Verbindungen erklärbar.

In der Literatur der im Titel genannten komplexen Fluoride gibt es vorwiegend drei Typen von Anionen, und zwar $[MF_4]^-$, $[MF_5]^{2-}$ und $[MF_6]^{3-}$. Nach Strukturuntersuchungen sind sie alle oktaedrisch koordiniert. Die Kryolith-Struktur ist allgemein bekannt, aber auch Tl_2AlF_5 und $TlAlF_4$ enthalten oktaedrisch koordiniertes Aluminium, durch Verknüpfung einer gemeinsamen Ecke zu Ketten oder über gemeinsame Ecken zu Schichten, wie es *Brosset*¹ bewiesen hat.

Wir haben uns die Frage gestellt, wie sich diese Geometrie in den IR-Spektren dieser Verbindungen theoretisch und praktisch widerspiegelt und ob bei Fluoro-gallaten und -indaten ähnliche Verhältnisse vorliegen. In der Literatur fanden wir in zwei Abhandlungen IR-spektroskopische Untersuchungen dieser Verbindungen. De Lattre² gibt 599 cm⁻¹ als die einzige gemessene Bande für Na₃AlF₆ und KAlF₄ an, Peacock und Sharp³ berichten über ν_3 -Schwingungen der MF_6^{3-} -Ionen mit den Werten 570 cm⁻¹ für Al, 464 cm⁻¹ für Ga und 446 cm⁻¹ für In. Anscheinend auf Grund der Arbeit von de Lattre² stellen sie fest, daß die Verknüpfung der Oktaeder über gemeinsame Ecken die ν_3 -Schwingung nicht in größerem Ausmaß beeinflußt.

Experimenteller Teil

Die IR-Spektren wurden im Bereich von 4000 bis 250 cm^{-1} mit einem Perkin-Elmer-Modell 521-Gerät und im Bereich von 350 bis 59 cm^{-1} auf einem Beckman Model IR-11 in Nujol aufgenommen. Die Auflösung wurde bei unseren Untersuchungen im ersten Fall auf 2 cm^{-1} und im zweiten Fall auf 5 cm^{-1} geschätzt.

Für unsere Untersuchungen haben wir eine Auswahl unter den bisher bekannten Verbindungen dieser Gruppe synthetisiert. Die Ausgangsstoffe waren teilweise die gleichen wie in unserer 1. Mitt. angegeben⁴, ferner dienten uns für die Herstellung der entsprechenden Metall(I)fluoride Alkalimetallcarbonate (p. A.): Rb₂CO₃ 99.8%, Cs₂CO₃ 99.9% und Thallium 99.999% der Firma Koch-Light Laboratories, Colnbrook, England.

TlAlF₄ und Tl₂AlF₅ haben wir nach *Brosset*¹ hergestellt, NH₄AlF₄ und (NH₄)₃AlF₆ nach *Novoselova*⁵ und Na₃AlF₆ nach *Tananaev* und *Leljčuk*⁶. Von den Fluorogallaten wurden hergestellt: (NH₄)₃GaF₆ nach *Hannebohn* und *Klemm*⁷, Na₃GaF₆ nach *Pugh*⁸; K₂GaF₅, RbGaF₄ und CsGaF₄ durch

¹ C. Brosset, Z. anorg. allgem. Chem. 235, 139 (1937).

² A. de Lattre, J. Chem. Physics 19, 1610 (1951); 20, 1180 (1952).

³ R. D. Peacock und D. W. A. Sharp, J. Chem. Soc. 1959, 2762.

⁴ J. Šiftar und P. Bukovec, Mh. Chem. 101, 1184 (1970).

⁵ A. V. Novoselova, J. obščei chim. 10, 1547 (1940).

⁶ I. V. Tananaev und Ju. L. Leljčuk, Dokl. Akad. Nauk SSSR **41**, 118 (1943).

⁷ O. Hannebohn und W. Klemm, Z. anorg. allgem. Chem. 229, 335 (1936).

⁸ W. Pugh, J. Chem. Soc. [London] 1937, 1046.

Dehydratation von nach $Pugh^{s}$ ausgefällten Hydraten bei 220° C. Diese Produkte sind identisch mit den Verbindungen, die *Chassaing*⁹ beim Studium der Systeme *M*F—GaF₃ erhalten hat. NH₄GaF₄ wurde ebenso durch Dehydratation von NH₄GaF₄ · 2 H₂O bei 150° C erhalten, das nach Angaben von *Tananaev* und *Vorotilina*¹⁰ hergestellt wurde.

Die Fluoroindate wurden auf Grund der folgenden Arbeiten hergestellt: $(NH_4)_3InF_6$ nach *Dejöman* und *Capkin*¹¹, Na₃InF₆ nach *Dejöman* und *Tananaev*¹², K₃InF₆ nach *Dejöman* und Mitarb.¹³, CsInF₄ durch Dehydratation bei 220° C des CsInF₄ · 2 H₂O (*Dejöman* und *Krysina*¹⁴). TlInF₄ und Tl₂InF₅ wurden durch Dehydratation von TlInF₄ · 2 H₂O bzw. Tl₂InF₅ · H₂O bei 300° C hergestellt, die nach *Dejöman* und Mitarb.¹⁵ gewonnen wurden. Auf Grund der Arbeit¹⁵ wurde auch Tl₃InF₆ erhalten.

Ferner wurden alle wasserfr. Hydrazinium $(^{1+}$ und $^{2+})$ -fluoro-aluminate, -gallate und -indate, die wir in unseren 1. und 2. Mitt.^{4, 16} beschrieben haben, zur Analyse ihrer IR-Spektren herangezogen.

Resultate

Wenn wir bei den untersuchten Hexafluorometallaten das MF_6^{3-} -Ion als isoliertes, nicht deformiertes Oktaeder betrachten, sind nur zwei Grundschwingungen im IR-Spektrum aktiv. Wie allgemein bekannt, sind diese für die Punktgruppe O_h, Klasse F_{1u} eine Valenz- (v₃) und eine Deformations-Schwingung (v₄). Bei einer kubischen Kristallstruktur ist keine Deformation der Oktaeder zu erwarten und deshalb keine Aufspaltung der Grundschwingungen. Bei niedrigerer Kristallsymmetrie ist aber eine Deformation der Oktaeder zu erwarten und so ist die Aufspaltung der Grundschwingungen, ihre Kombination oder die Aktivierung der inaktiven Schwingungen möglich und durch ihre Lagesymmetrie bedingt.

Für K₃InF₆ haben wir auf Grund seiner Struktur (alle Strukturdaten sind aus dem Buch von $Wyckoff^{17}$ entnommen, wenn nichts anderes angegeben ist) die Faktorgruppenanalyse ausgeführt. Wegen der 16 Formeleinheiten in der Elementarzelle haben wir aktive acht F_u (äußere Translationen) und achtzehn F_u (innere Schwingungen) bekom-

⁹ J. Chassaing, Rev. Chim. minérale 5, 1115 (1968).

¹⁰ I. V. Tananaev und T. B. Vorotilina, Izv. Sib. Otdel. Akad. Nauk SSSR, Ser. chim. nauk Nr. 2, 1, 3 (1968).

¹¹ E. N. Dejčman und V. V. Capkin, J. neorg. chim. 12, 307 (1967).

¹² E. N. Dejčman und J. V. Tananaev, Himija redkih elementov 1, 95 (1954), Akad. Nauk SSSR, Moskva.

¹³ E. N. Dejčman, P. D. Jarceva und Ž. A. Ježova, J. neorg. chim. 13, 1404 (1968).

¹⁴ E. N. Dejčman und L. S. Krysina, J. neorg. chim. 10, 476 (1965).

¹⁵ E. N. Dejčman, R. D. Jarceva und P. A. Čeljanov, J. neorg. chim. **13**, 2658 (1968).

¹⁶ P. Bukovec und J. Šiftar, Mh. Chem. 102, 94 (1971).

¹⁷ R. W. G. Wyckoff, Crystal Structures, 2nd Ed., Vol. 3. New York: Interscience 1965.

men. Experimentell konnten wir aber nur drei Banden im untersuchten Gebiet finden. Deshalb gehen wir hier auf eine Faktorgruppenanalyse für K_3InF_6 nicht ein.

Die Faktorgruppenanalyse für Na₃AlF₆ ist in Tab. 1 gegeben; hier bedeuten die Symbole: n_i = Gesamtzahl der Schwingungen der Elementarzelle, T = Schwingungen der gesamten Elementarzelle, T' = äußere Translationen der Na⁺- und AlF₆³⁻-Ionen, R' = äußere Rotationen der AlF₆³⁻-Ionen, n_i' = innere Schwingungen der AlF₆³⁻-Ionen und IR-a = im IR aktive Schwingungen.

C_{2h}	n_i	T	T^{\prime}	R'	n_i	IR
Ag	12	0	3	3	6	
\mathbf{B}_{g}	12	0	3	3	6	
A_u	18	1	8	0	9	a
\mathbf{B}_{u}	18	2	7	0	9	a

Tabelle 1. Faktorgruppenanalyse von Na₃AlF₆

Eine bessere Einsicht in die für uns interessantesten v_3 - und v_4 -Schwingungen des Ions AlF₆³⁻ im Na₃AlF₆ bekommen wir durch Korrelation zwischen der Lagesymmetrie O_h und C_i (Tab. 2).

ν (M ^I	пF)	δ (F— <i>M</i>	IIIF)
Oh	C_i	Oh	C_i
A_{1g}	Ag	\mathbf{F}_{2g}	$3A_g$
$\mathbf{E}_{g} \mathbf{F}_{1u}(\mathbf{a})$	${}^{2\mathrm{A}_{\mathrm{g}}}_{3\mathrm{A}_{\mathrm{u}}(\mathrm{a})}$	$\mathbf{F}_{2\mathbf{u}}^{\mathbf{r}}(\mathbf{a})$	$3A_u(a)$ $3A_u(a)$

Tabelle 2. Korrelationsschemata

Auf Grund dieser Tabelle mußte man die Aufspaltung der dreimal degenerierten v_3 - und v_4 -Schwingungen der Symmetrieklasse F_{1u} auf drei Komponenten der Symmetrieklasse A_u erwärten. In Tab. 3 sind die gemessenen Banden, ihre Intensitäten und Zuordnungen angeführt. Die Struktur von Na₃InF₆ wurde erst vor kurzem von *Grannec* und Mitarb.¹⁸ veröffentlicht. Die Schwingungen des NH₄⁺-Ions sind in dieser Tab. 3 nicht enthalten.

Von den untersuchten Pentafluorometallaten ist nur die Kristallstruktur von Tl₂AlF₅ (*Brosset*¹) bekannt. Diese Verbindung ist orthorhombisch, Raumgruppe D_2^5 , Z = 4. In der *Bravais*schen Elementarzelle sind 2 Formeleinheiten mit der Lagesymmetrie C₂ enthalten. Die

¹⁸ J. Grannec, J.-C. Champarnaud und J. Portier, Bull. Soc. Chim. France **1970**, 3862.

	${ m Na_3AlF_6} { m C}_{2{ m h}}$	$(\mathrm{NH}_4)_3^\mathrm{AlF_6}\mathrm{O}_\mathrm{h}^{5}$	Na ₃ GaF ₆ **	(NH4)3GaF6 cub.	${ m Na_{8}InF_{6}} { m C}_{2{ m h}}$	$ m K_3 In F_6 \ T_h^4$	${ m (NH_4)_3InF_6} { m D_{4n}^6}$	Tl ₃ InF ₆ cub.
٧3	590 vs	570 vs	500 vs, b	470 s	467 vs	455 s	460 vs	410 vs
V4	$390\mathrm{m}$	$385\mathrm{m}$	308 vs	295 vs	$250 \mathrm{s, vb}$	255 vs	$235 \mathrm{s}$	200 vs
$\omega \; (M^{111} \mathrm{F}_6 - M^{111} \mathrm{F}_6)$			$235\mathrm{s}$	235 s	140 vs	$132\mathrm{s}$	140 s, b	
$\omega (M^{I} - M^{III} F_6)$		$220 \mathrm{s, vb}$	$200 \mathrm{s}$	$210\mathrm{s}$	116 vs			
$\omega (M^1 - M^1)$	$212\mathrm{s}$				$210 \mathrm{~s}$			
•	$180 \mathrm{s}$				182 w			96 vs
Э	$260 \mathrm{s}$		$162 \mathrm{~s}$				190 s	
	$103~{ m m}$		$82 \mathrm{m}$					

** Wahrscheinlich mon. C_{2h}^{5} , wird veröffentlicht.

889

Faktorgruppenanalyse ist in Tab. 4, die Vibrationsanalyse in Tab. 5 zusammengefaßt.

				the second s	and the second se	
D_2	n_i	T	T'	R'(z)	n_i'	IR
A	10	0	4	0	6	
B_1	14	1	4	1	8	a
B_2	11	1	3	0	7	a
B_3	13	1	4	1	7	a

Tabelle 4. Faktorgruppenanalyse von Tl₂AlF₅

Tabelle 5. Vibrationsanalyse von Tl₂AlF₅ auf Grund der Lagesymmetrie

C_2	n_i	T	R	n_i	ν (AlF)	δ (FF)
A B	9 12	$\frac{1}{2}$	$1 \\ 2$	7 8	4 2	3 6

In der Tab. 4 haben die Symbole die gleiche Bedeutung wie in der Tab. 1. In der Tab. 5 bedeuten: n_i = Gesamtzahl der Schwingungen des AlF₅²⁻-Ions zusammen mit ihren Translationen (*T*) und Rotationen (*R*), n_i' = innere Schwingungen des AlF₅²⁻-Ions, ν (Al—F) und δ (F—Al—F) = Valenz- bzw. Deformations-Schwingungen des AlF₅²⁻-Ions. Das gleiche Resultat bekommen wir durch die Korrelations-Tab. 6 zwischen der Lagesymmetrie O_h und C₂. In Tab. 7 sind unsere gemessenen Werte mit der Zuordnung angeführt.

Tabelle 6. Korrelationsschemata

	Al-F)	δ (F-	
O _h	C_2	Oh	C ₂
$\overline{A_{1g}}$	A (a)	$\mathbf{F}_{2\mathbf{g}}$	A (a) $+ 2B$ (a)
$\mathbf{E}_{\mathbf{g}}$	2A (a)	\mathbf{F}_{1u} (a)	A (a) $+2B$ (a)
F _{1u} (a)	A (a) $+ 2B$ (a)	F_{2u}	A (a) $+2B$ (a)

Von den behandelten Tetrafluorometallaten(III) sind die Strukturen der isomorphen Verbindungen $M^{\mathrm{I}}\mathrm{AlF}_4$ bekannt, wo $M^{\mathrm{I}} = \mathrm{Na}$, K, Rb, Tl oder NH₄ sind. Isostrukturell mit diesen Verbindungen ist auch NH₄GaF₄. Alle sind tetragonal, Raumgruppe $\mathrm{D}^{\mathrm{I}}_{4\mathrm{h}}$, Z = 1. In Tab. 8 ist die Faktorgruppenanalyse gegeben und in Tab. 9 Korrelation zwischen der Lagesymmetrie O_h und D_{4h}.

So ist für diese tetragonalen Tetrafluorometallate Aufspaltung der v_3 - und v_4 -Schwingungen in zwei Komponenten zu erwarten; zusätzlich

	${ m Tl}_2{ m AlF}_5$	${ m K_2GaF_5}$	${ m Tl_2InF_5}$
ν ₃	$675 \mathrm{m}$	$580~{ m m}$	$475 \mathrm{m}$
	540 vs, vb	$545 \mathrm{~s}$	$430 \mathrm{s}$
		$510 \mathrm{~s}$	$415~{ m s}$
٧4	39 0 w	308 s	215 vs
•	350 vs	$273 \mathrm{~s}$	$200 \ \mathrm{vs}$
	$325 \mathrm{~s}$	$239 \mathrm{~s}$	190 vs
$\omega (M^{I} - M^{III} F_{5})$	$230 \mathrm{w}$		
$\omega (M^{I} - M^{I})$	109 s		$105 \mathrm{~s}$
. ,	$101 \mathrm{~s}$		$95 \ \mathrm{vs}$
	89 s		88 s
ω		$160 \mathrm{~s}$	$148 \mathrm{~s}$
		$142 \mathrm{m}$	

Tabelle 7. Gemessene Wellenzahlen (cm⁻¹), Intensitäten und Zuordnung der Bande für $M_2^{I}M^{III}F_5$

Tabelle 8. Faktorgruppenanalyse von TlAlF₄ bzw. der isostrukturellen Verbindungen

D_{4h}	n_i	T	T'	R'	n_i'	IR
A _{1g}	1				1	
A_{2g}						
B_{1g}						
B_{2g}						
$\mathbf{E}_{\mathbf{g}}$	1			1		
A_{1u}						
A_{2u}	4	1	1		2	a
B_{1u}						
B_{2u}	1				1	
$\mathbf{E}_{\mathbf{u}}$	5	1	1		3	a

Tabelle 9. Korrelationsschemata

	···F)	δ (F-	— <i>M</i> ^{III} —F)
Oh	D_{4h}	O_h	$\mathbf{D}_{4\mathrm{h}}$
$\overline{A_{1g}}$	A_{1g}	$\mathbf{F}_{2\mathbf{g}}$	$B_{2g}+E_{g}$
E _g F _{1u} (a)	$A_{1g} + B_{1g} A_{2u}$ (a) + E_{u} (a)	$\mathbf{F_{1u}}_{\mathbf{F_{2u}}}(\mathbf{a})$	$\mathbf{A_{2u}}$ (a) $+ \mathbf{E_{u}}$ (a) $\mathbf{B_{2u}} + \mathbf{E_{u}}$

sind zwei Gitterschwingungen und eine Deformationsschwingung möglich. In Tab. 10 sind die Resultate an den untersuchten Tetrafluorometallaten(III) angeführt. P. Bukovec u. a.:

	NH ₄ AlF ₄	TIAIF4	$\rm NH_4GaF_4$	RbGaF4	$CsInF_4$	$TlInF_4$
ν ₃	690 vs, b 490 vs, b	700 vs 560 vs	570 s 520 s	595 s 520 s	49 0 vs, b	$520 vs \\ 485 vs \\ 470 vs$
ν4	400 s 340 vs, b	400 s 336 vs, b	315 s 270 vs, b	$325 \mathrm{~m}$ $255 \mathrm{~s}$	298 s 235 s 190 vs	305 vw
$\omega (M^{III}F_4 - M^{III}F_4)$	$250 \mathrm{~s}$	$231 \mathrm{~s}$	*			*
δ (F— <i>M</i> ¹¹¹ —F)	210 vs	203 vs				
$\omega (M^{I} - M^{III}F_4)$	158 vs	$105 \mathrm{~s}$				
ω	·			210 s 126 m, sh 105 s 97 s 78 s	97 s 73 s 65 s	

Tabelle 10. Gemessene Wellenzahlen (cm⁻¹), Intensitäten und Zuordnung der Bande für $M^{I}M^{III}F_4$

* Nicht gemessen.

Tabelle 11. Gemessene Wellenzahlen (cm⁻¹), Intensitäten und Zuordnung der Bande für Hydraziniumverbindungen*

$\mathrm{N_{2}H_{6}AlF_{5}}$	$\mathrm{N_{2}H_{6}GaF_{5}}$	${ m N_2H_5GaF_4}$	$ m N_2H_5InF_4$
670 s	545 m	542 vs	479 vs, b
630 vs	505 vs, b	490 vs	$402 \mathrm{s}$
565 vs			
440 m	$380 \mathrm{m}$		
$400 \mathrm{\ s}$	300 s	$315~\mathrm{s}$	$365 \mathrm{~s}$
360 s	$270 \mathrm{m}$	$284 \mathrm{~s}$	$310 \mathrm{s}$
$337 \mathrm{\ s}$	$228 \mathrm{~s}$		
$250 \mathrm{~s}$		**	**
$188 \mathrm{s}$	$195 \mathrm{s}$		
$115 \mathrm{m}$	$116 \mathrm{s}$		
83 vw	81 m		
$130 \mathrm{~s}$	98 s		
	$\begin{array}{c} {\rm N_2H_6AlF_5}\\ \hline\\ 670 {\rm \ s}\\ 630 {\rm \ vs}\\ 565 {\rm \ vs}\\ 440 {\rm \ m}\\ 400 {\rm \ s}\\ 360 {\rm \ s}\\ 337 {\rm \ s}\\ 250 {\rm \ s}\\ 188 {\rm \ s}\\ 115 {\rm \ m}\\ 83 {\rm \ vw}\\ 130 {\rm \ s}\\ \end{array}$	$\begin{array}{c cccc} N_2H_6AlF_5 & N_2H_6GaF_5 \\ \hline 670 \ s & 545 \ m \\ 630 \ vs & 505 \ vs, \ b \\ 565 \ vs \\ \hline 440 \ m & 380 \ m \\ 400 \ s & 300 \ s \\ 360 \ s & 270 \ m \\ 337 \ s & 228 \ s \\ 250 \ s \\ \hline 188 \ s & 195 \ s \\ 115 \ m & 116 \ s \\ 83 \ vw & 81 \ m \\ 130 \ s & 98 \ s \\ \end{array}$	$\begin{array}{c ccccc} & N_2H_6{\rm GaF_5} & N_2H_5{\rm GaF_4} \\ \hline & 670 \ {\rm s} & 545 \ {\rm m} & 542 \ {\rm vs} \\ 630 \ {\rm vs} & 505 \ {\rm vs}, \ {\rm b} & 490 \ {\rm vs} \\ 565 \ {\rm vs} & & & \\ \hline & 440 \ {\rm m} & 380 \ {\rm m} \\ 400 \ {\rm s} & 300 \ {\rm s} & 315 \ {\rm s} \\ 360 \ {\rm s} & 270 \ {\rm m} & 284 \ {\rm s} \\ 337 \ {\rm s} & 228 \ {\rm s} \\ \hline & 250 \ {\rm s} & & ** \\ \hline & 188 \ {\rm s} & 195 \ {\rm s} \\ 115 \ {\rm m} & 116 \ {\rm s} \\ 83 \ {\rm vw} & 81 \ {\rm m} \\ 130 \ {\rm s} & 98 \ {\rm s} \\ \end{array}$

* Innere Schwingungen der Hydrazinium-Ionen sind hier nicht angegeben.

** Nicht gemessen.

In Tab. 11 sind die Spektren der wasserfreien Hydrazinium⁽¹⁺ und ²⁺)-Fluorometallate(III), die wir vor kurzen beschrieben haben^{4,16}, angeführt. Die Valenz- und Deformationsschwingungen der Hydrazinium-

Ionen sind in unserer 1. und 2. Mitt. ohne Zuordnung gegeben. Eine wahrscheinliche Zuordnung ist möglich, aber wir sind der Meinung, daß es besser wäre, dieses Thema, der vielen veröffentlichten Angaben wegen, einer zusammenfassenden Untersuchung zu überlassen.

Der vielen hergestellten und gemessenen Ammoniumverbindungen wegen geben wir die beobachteten inneren Schwingungen mit einer Gitterschwingung (ν_6) des NH₄⁺-Ions in der Tab. 12 wieder, mit der versuchsweisen Zuordnung auf Grund der Arbeiten von Wagner und Horning¹⁹, Baker und Haendler²⁰ und Smith, Stoessiger und Turnbull²¹.

	$(NH_{4})_{a}\Delta F_{a}\rangle$	(NH a) GaFa	(NH a) InFa	NHAIFA	NH4GaF4
	(14114)3AIF 6	(MII4)3Gar 6	(14114)31111-6		
ν3	3250 vs	3220 vs	3190 vs	3230 vs	3235 vs
$v_2 + v_4$	3050 vs	3050 vs	3050 vs	3120 vs	3060 vs
$2 v_4$	$2860 \mathrm{m}, \mathrm{sh}$	2890 vs	2870 vs	$2860~{ m m}$	$2840~\mathrm{m,sh}$
$v_2 + v_6$	2080 vw	$2100~{ m w}$	2100 vw	$2100 \ \mathrm{vw}$	
$v_4 + v_6$	1680 vw	1690 w	$1690 \mathrm{w}$		1700 vw
ν4	1435 vs	1430 vs	1430 vs	1425 vs	1428 vs

Tabelle 12. Gemessene Wellenzahlen (cm⁻¹), Intensitäten und Zuordnung der Bande für NH₄⁺

Diskussion

Zuerst möchten wir die interessantesten inneren Schwingungen der Fluorometallat-Ionen diskutieren. Bei allen Hexafluorometallaten haben wir nur zwei Schwingungen v_3 und v_4 festgestellt (Tab. 3). Das ist im Einklang mit der Theorie für die kubischen Hexafluorometallate, nicht aber für solche mit der niedrigeren Symmetrie. Die Breite der Bande deutet bei den kubischen Verbindungen auch auf eine schwache Wechselwirkung zwischen den Oktaedern hin. Wir sind der Meinung, daß diese auch bei den anderen Hexafluorometallaten zu schwach ist, um eine Aufspaltung der Banden, die größer als 5 cm⁻¹ ist, zu ergeben. Diese These wird unterstützt durch die stärker ausgeprägte Breite der Banden der Hexafluorometallate mit der niedrigeren Symmetrie im Vergleich mit den kubischen.

Bei den Pentafluorometallaten haben wir erwartungsgemäß Aufspaltung der v_3 - und v_4 -Schwingungen beobachtet (Tab. 7 und 11). Alle v_4 -Schwingungen sind auf drei Banden aufgespalten, die v_3 -Schwingungen bei drei der untersuchten Verbindungen ebenso auf drei Banden, bei

¹⁹ E. L. Wagner und D. F. Horning, J. Chem. Physics **18**, 269 (1950); **18**, 305 (1950).

²⁰ E. Baker und H. M. Haendler, Inorg. Chem. 1, 127 (1962).

²¹ P. W. Smith, R. Stoessiger und A. G. Turnbull, J. Chem. Soc. A 1968, 3013.

zweien aber auf zwei Banden, von denen eine sehr breit ist. Bei den beiden Hydraziniumpentafluorometallaten haben wir auch eine Aktivierung einer inneren Schwingung des $M^{III}F_5^{2-}$ -Ions beobachtet.

Bei Tl₂AlF₅, K₂GaF₅ und Tl₂InF₅ haben wir bei der niedrigeren Symmetrie aktivierte innere Schwingungen nicht gefunden; hier werden Raman-spektroskopische Untersuchungen notwendig sein. In dieser Gruppe ist nur die Struktur von Tl₂AlF₅ bekannt. Die experimentellen Befunde sind also *nicht* im Einklang mit den nach Lagesymmetrie berechneten Absorptionen (Tab. 5 oder 6).

Völlige Übereinstimmung zwischen den theoretischen und experimentellen Befunden haben wir bei tetragonalen Tetrafluorometallaten bekommen (Tab. 9 und 10). Die v_3 - und v_4 -Schwingungen sind auf zwei Banden aufgespalten. Auch alle übrigen Tetrafluorometallate — deren Struktur nicht bekannt ist — zeigen immer nur vier Banden, die wir als v_3 - und v_4 -Schwingungen signierten, wenn auch bei zwei Tetrafluoroindaten mit anderer Aufspaltung (Tab. 10 und 11).

Unserer Meinung nach bestätigen die angeführten Befunde die in unserer 1. Mitt.⁴ aufgestellte These über oktaedrische Koordination in den hergestellten Hydraziniumfluorometallaten auch durch Vergleich der Lage der Banden vollkommen. Inzwischen haben wir weitere Fluorometallate mit den "unklassischen" großen Kationen hergestellt und wir hoffen, in Kürze darüber mit einer wahrscheinlich neuen Koordinationsgeometrie berichten zu können.

Für die Gitterschwingungen gilt die allgemeine Feststellung, daß man meistens weniger Banden beobachtet als durch Faktorgruppenanalyse vorausgesagt wurden. Wieder sind die gemessenen Banden nur bei den tetragonalen Fluorometallaten im Einklang mit den beobachteten. Zur Zeit können wir nur in den zu kleinen Energieunterschieden zwischen verschiedenen Atomgruppen in den *Bravais*schen Elementarzellen die Ursache für die festgestellten Diskrepanzen suchen.

Natürlich ist es wünschenswert, die Korrelationen zwischen den gemessenen Wellenzahlen und anderen Größen festzustellen. Leider ist aber die Zahl der gemessenen isostrukturellen Verbindungen zu klein, um gut begründete Aussagen machen zu können. Für die Hexafluorometallate verläuft zwar die Abhängigkeit der Wellenzahl der inneren Schwingungen von den Radien der Na⁺-, K⁺-, NH₄⁺-Ionen parallel mit der Abszisse, doch fallen die Thallium-Verbindungen aus der Reihe. Für den ersten Fall konnte man so über einen Effekt der Kontraktion der Kristallgitter sprechen und als Beweis für erwartungsgemäße typisch ionische Bindung der Na⁺-, K⁺- und NH₄⁺-Ionen betrachten. Bei dem Tl⁺-Ion haben noch andere Größen einen Einfluß. Eine ähnliche Abhängigkeit von den Ionenradien der M^{3+} , z. B. in Na₃MF₆, zeigt stark fallende Tendenz, was wahrscheinlich mit den Eigenschaften der Bindung M^{III} —F zusammenhängt. Wir werden demnächst andere Fluorometallate(III) in unsere Untersuchungen einbeziehen und Raman-Spektren studieren, und hoffen, dadurch besser begründete Aussagen machen zu können.

Tab. 12, in welcher die Schwingungen des NH_4^+ -Ions angeführt und signiert sind, läßt sich auf Grund der schon zitierten Arbeiten^{19–21} deuten. In Ammoniumfluorometallaten tritt eine schwache Wasserstoffbindung auf, die genug stark ist, um eine freie Rotation des NH_4^+ -Ions zu behindern, aber zu schwach, um seine Symmetrie zu erniedrigen.

Für die finanzielle Unterstützung dieser Arbeit danken wir dem Fonds "Boris Kidrič".